### **Al Red-Teaming**

Unmasking the Vulnerabilities in LLMs

or\_wod = wodifier\_ob. min irror\_modesirror\_object ject to mirror peration == "MIRROR\_X": irror\_mod.use x = True Lrror\_mod.use irror\_mod.use NODE 01 operation == irror\_mod.use irror\_mod.use\_y lrror\_mod.use\_z = False NODE 04 operation == "MIRROR\_Z" irror\_mod.use\_x = False rror mod.use y = False NODE 05 innor fod use z = True election at the end -add ob.select= 1 er ob.select= ntext.scene.o ts.actim "Selected" + str(modifier bpy.context.selected\_ob mata.objects[one.name].sel wint("please select exactly - OPERATOR CLASSES -----BLOCK 01 NODE 01 types.Operator): X mirror to the selected jest.mirror\_mirror\_x" NODE 02 e\_object is not

context ext.

### **Presenters**



Managing Director, Cybersecurity and Privacy Tech, Media & Entertainment Cybersecurity Lead

E Caesar.Sedek@us.gt.com





## Intro to AI and LLMs

#### • What is Al

- · Simulation of human intelligence by machines
- Capabilities include learning, reasoning, and language understanding
- Large Language Models (LLMs)
  - Al models that process and generate human-like text
  - · Key features: context understanding, coherent text generation
- Importance of LLMs in Business
  - Transform business operations with advanced analytics and automation
  - Improve decision making, efficiency and customer interactions
- Applications Across Industries
  - **Finance:** Automated reporting, risks assessment, conversational finance
  - Healthcare: Improved patient interactions, streamlined medical documentation, image analysis
  - Customer Service: Automated responses, enhanced customer engagement

Clearly not the best at generating abstract infographics. Prompt: "Generate an Infographic illustrating different LLMs (e.g., GPT, BERT) along with their primary applications across industries such as finance, healthcare and customer service.





## **Understanding the Security Risks & Threats**

Because Large Language Models (LLMs) are secure by default,

right?

- Prompt Injection Attacks:
  - Malicious prompts used to manipulate LLM outputs leading to unauthorized actions or data exposure
  - Undermine model's reliability
  - Incorrect or harmful output
- Prompt Leaking
  - LLM reveals its own prompts or internal processing logic
  - Differs from prompt injection doesn't alter model's behavior – but extracts information about the model itself
- Data Leakage
  - Unintentional exposure of sensitive information through outputs of LLMs due to flaws in model's design or training data
- Personally Identifiable Information (PII) in LLMs
  - PII in LLMs prompts poses privacy risks
  - Exposure of personal identities
- Compliance issues with data protection laws
  - Use of LLMs to process PII may violate GDPR, CCPA, other privacy laws/regulations





## **Understanding the Security Risks & Threats**

Because Large Language Models (LLMs) are secure by default, right?







Once again – let's give it up to the creative genius of DALL-E!

#### Insecure Output Handling

- · Unsafe or harmful content due to lack of output handling / filtering
- Model Denial of Service (DoS)
  - Overwhelming LLM with a flood of requests or inputs rendering it unable to function
- Insecure Plugin Design
  - · Plug-ins or extensions can introduce vulnerabilities
  - Insecure interfaces/APIs
- Excessive agency and overreliance
  - Excessive agency gives LLM more autonomy or functions than necessary
  - Security risk due to blind trust in outputs and neglect of anomaly detection
- Model theft
  - Unauthorized access, copying or use of proprietary LLM models



## **Mitigation Strategies**

Best practices for security Large Language Models (LLMs) against prompt injection attacks.

#### Input Validation and Sanitization

- Implement Strict Validation rules for inputs based on format, type and length
- Automatically sanitize inputs to remove or encode harmful characters or patterns

#### Allowlists

• Use allowlists (permitted inputs) over blocklists (forbidden inputs)

#### Role-Based Access Control / Zero Trust

- Limit permissions across the stack to only those strictly necessary
- Minimize potential damage of a successful attack

#### Secure Prompt Design

- Design prompts that limit user's ability to influence execution path
- Use structured data as input where possible vs. free text
- Template use with variables
- Regular Expression (RE) Check
  - Use RE to identify and block potentially malicious patterns in inputs
- Logging and Monitoring
  - Log/monitor unusual patterns of use
  - · Detailed audit trails



## **Prompt Leak Prevention**

Strategies for addressing prompt leaking and maintaining the integrity and confidentiality of LLMs

- Data Anonymization, Data Redaction and Pseudonymization
  - Anonymize data sent to prompts
  - Automated Redaction
  - Replace sensitive data with non-identifiable placeholders that maintain reference integrity
- Input Validation and Sanitization
  - · Remove or encode characters and patterns in input data
  - · Ensure data sent to LLM adheres to expected formats and ranges
- Encryption
  - Use strong encryption to prevent man-in-the-middle (MITM) attacks
  - Encrypt sensitive data used as part of model's training data
- Secure Data Handling Practices
  - Encrypt data at rest and in transit
  - · Use strict access controls to limit both read and write access to data
- Secure Authentication Mechanisms
  - Implement strong authentication (e.g., Multi-factor authentication)
- API Gateways
  - Use application programing interface (API) gateways with rate limiting and monitoring

- Education & Awareness
  - · Inform users about types of data that system can process
  - Guidelines on what information shouldn't be submitted into the system
- Regular Audits and Assessments
  - · Conduct regular security audits and privacy assessments
  - Penetration testing against internal systems
  - AI Red-Teaming
- Privacy by Design
  - Adopt a privacy-by-design approach



## **Al Red-Teaming**

Assess your AI solutions before they are challenged by real-world

adversaries

- What is AI Red-Teaming
  - Simulating attacks on AI systems to identify and address vulnerabilities before they can be exploited maliciously
- Why Red-Teaming
  - Maintain integrity and trustworthiness of AI system in critical applications
  - Proactive approach
- Al Red-Teaming Strategies
  - Attacking the Model: Techniques include input manipulation, exploiting model biases, finding loopholes in model logic
  - Attacking the Developer: Social engineering aimed at exploiting human factors and system configurations





## **Our Cybersecurity & Privacy solution overview**

- Cybersecurity program risk and maturity assessment; Cybersecurity program implementation
- Design and implement governance, risk, and compliance (GRC) technology solutions



#### **Cyber Defense Solutions**

- Vulnerability assessment, penetration testing, and red teaming; Cyber incident tabletop exercises
- Cyber defense technology implementation; managed Cyber analytics (MCA) services



#### Privacy & Data Protection

- Personal data inventory, privacy program readiness assessment and implementation (GDPR, CCPA)
- Data protection assessments; privacy solution implementation (data discovery, classification, retention, leakage protection)



#### Identity and Access Management

- · Identity and access management strategy; privileged & role-based access implementation
- · Identity and access management technology implementation and application onboarding



#### Third Party Risk Management (TPRM)

- Program Design and Strategy
- TPRM Program Execution/Assessments and Technology Automation





# **Questions?**





# Thank You!

